Development of a Helical Path Tree Climbing Snake Robot Design Presentation II

<u>Team 10</u>

Jorge Campa

Michelle Maggiore

Justin Morales

Esteban Szalay

Advisor Dr. Jonathan Clark

Instructors

Dr. Nikhil Gupta Dr. Chiang Shih

Problem Definition

- Unstable trees may fall at any moment
- Fallen trees cause over \$1 billion worth of damage annually
- Removing tall trees should be done by professionals
 - Requires specific skills and precision
 - 200 tree-related fatal injuries every year

Introduction

Tree Removal Services

- Removing Process:
 - De-limbing on the way up
 - Cutting small segments on way down
 - Cut at base once at controllable height
- Price ranges from \$150-\$2,000
 - Complexity of job
 - Height of tree
- Focus on pine trees
 - Average Diameter: ~2 ft
 - Height: Up to 100 ft
 - Shape: Round and straight

Project Goal Statement

Original Scope:

• To climb a tree in a helical manner and cut it down via the method of 'topping'.

Revised Scope:

• To climb a branchless tree, in a helical manner, carrying a payload for future iterations.

Goal Statement:

• Build a remotely operated snake-like robot that will safely climb trees.

Justin Morales

Project Goal Statement

Objectives:

- Ascend and descend a tree while satisfying the following:
 - Tree diameter of at least 10 in
 - Climb in a helical (spiral) path
 - Ascend at a speed of at least 1 ft/min
 - Hold up at least 10 lb
 - Attach camera to provide feedback

Justin Morales

Electronics Future Plans

Summary

Motor Selection - old motor

	Clamping	Helix		
Calculated Torque	20 lbf · ft	20 lbf · ft		
Motor stall torque	<mark>0</mark> .74 lbf • ft	<mark>0</mark> .74 lbf · ft		
Motor max speed	23 rpm	23 rpm		

Motor Selected:

- DC motor
- 12 V
- 90 mA
- Gear Ratio- 100:1

Future Plans Summary

Motor Selection - New Motor

Element	Motor (driving)	Gearbox (driving)	Total
Speed	19,300rpm	326:1	59.2 rpm
Torque (stall)	0.3602 lb-ft	326:1	117.4 lb-ft
Weight	7.7oz	11.4oz	1.194 lbs
Element	Motor (clamping)	Gearbox (clamping)	Total
Speed			
Opeeu	19,300rpm	672:1	28.7 rpm
Torque (stall)	19,300rpm 0.3602 lb-ft	672:1 672:1	28.7 rpm 242.1 lb-ft

Torque-Speed Curve for Motor

Introduction

Motion Analysis Electronics Future Plans Summary

Design Alteration - Previous Design

Body Module

Motor Module

Design Alteration - Improved Design

Introduction

Design Alteration - Improved Design

Introduction

Motion Analysis

Electronics

Future Plans

Summary

How Our Design Works - Clamping

- Assumptions: ٠
 - Tension (T) is constant
 - Module-to-module angle change (θ) is constant

- Clamping is independent of ٠ helix
- No losses due to friction

Final torque needed for clamping $\approx 20 \ lbf \cdot ft$

$$\theta = 2 \tan^{-1} \left(\frac{L}{2r} \right)$$

 θ is the module-to-module angle L is the length of the module r is the radius of the tree

 $F_c = T\sqrt{2 - 2\cos\theta}$ F_c is the clamping T is the tension

Justin Morales

Introduction Motors and Modules Motion

Motion Analysis

Electronics F

Future Plans Summary

How Our Design Works - Differential

Introduction Motors and Modules

Motion Analysis

Electronics

Future Plans

Summary

Proof of Concept - Differential

Esteban Szalay

Future Plans Summary

Electronics - board and components

Future Plans Summary

Electronics - board and components

Future Plans Summary

Electronics - Wireless Camera

- Backup Camera and Monitor
 - 4.3" Monitor
 - Rated Voltage: 12 V
- Wireless Color Video Transmitter and Receiver
 - Signal Range: 15-20 m

Esteban Szalay

Future Plans Su

Summary

Battery Selection

Component	Max Current Draw (A)	Battery Capacity (mAh)	Runtime (Capacity/Current)
Motor	12.0	2250	11min
Voltage Regulator	0.600	1000	1.6hr
Wixel	0.060	260	4.3hr
Camera	0.350	1100	3.1hr
Monitor	0.900	1100	1.2hr

Future Plans Sur

Summary

Battery Selection

- Inner dimensions of car: 110x83x38mm
- Selection for prototype

Specs	Battery A	Battery B		
Capacity (mAh)	2250	5000		
Expected Runtime (min)	11	24		
Size (mm)	104X35x34	143X51X33		
Weight (g)	243	460		
Warehouse Location	US 🔾	Hong Kong		

Future Plans Summary

New Cost Estimate

Component	Cost			
Electronics	900			
Machining	1900+350			
Mechanical Parts	250			
Total	3400			
Budget Report	Budget Forecast			
 Electronics Machining Material for Machining Mechanical Parts 	15% 40% 40% Electrical Components • Mechanical Components • Flexible Capital 20			

Summary

Future Plans

				1				
Task Name	Duration	Start	Finish	Predecessors	Mar 12, '17 S	т	Mar 20	5, '17 Apr 9, '17 T S W S T
Finalizing Project	16 days	Wed 3/22/17	Wed 4/12/17					Finalizing Project
						l l		
Electronics	9 days	Wed 3/22/17	Mon 4/3/17			-	Electr	onics
Implement wireless communication	7 days	Wed 3/22/17	Thu 3/30/17					
Test motor response to wireless	3 days	Thu 3/30/17	Mon 4/3/17					
Assembly of final design	5 days	Sun 4/2/17	Fri 4/7/17					Assembly of final design
Mechanical components	6 days	Sun 4/2/17	Fri 4/7/17					
Electrical components	6 days	Sun 4/2/17	Fri 4/7/17					
Testing and Troubleshooting	4 days	Fri 4/7/17	Wed 4/12/17					Testing and Troubleshooting
Clamping	4 days	Fri 4/7/17	Wed 4/12/17					
Motion	4 days	Fri 4/7/17	Wed 4/12/17					
Combined System	4 days	Fri 4/7/17	Wed 4/12/17					

Summary

- We reworked the motor selection
 - This lead to a rework in design
- Finalized purchases for materials and electronics
 - We are waiting for parts to arrive
- Waiting on machine shop for parts and assembly
 - Waiting for assembly to begin testing
- Preparing to test basic functions as well as payload positioning

References

- P. Polchankajorn and T. Maneewarn, "Development of a helical climbing modular snake robot," in 2011 IEEE International Conference on Robotics and Automation, May 2011, pp. 197–202.
- Snake Robot: <u>http://farm4.staticflickr.com/3779/9313104039_867fafb326.jpg</u>
- Pine tree: <u>https://img1.cgtrader.com/items/152956/f9362d2d16/pine-tree-</u> collection-3d-model-obj-3ds-fbx-3dm-dwg.jpg
- <u>http://www.dot.state.mn.us/bridge/pdf/insp/USFS-</u> <u>TimberBridgeManual/em7700_8_chapter03.pdf</u>

QUESTIONS?

Appendix A - Tree Curvature

